
A simple nonlinear dissipative quantum evolution equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1981 J. Phys. A: Math. Gen. 14 2259

(http://iopscience.iop.org/0305-4470/14/9/021)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 14:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/14/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 14 (1981) 2259-2267. Printed in Great Britain 

A simple nonlinear dissipative quantum evolution equation 
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1211 Genbve 4, Switzerland 
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Abstract. In this paper we considered a nonlinear dissipative evolution equation that 
generalises the Schrodinger equation. In the corresponding evolution all the stationary 
states of the usual Schrodinger equation have a behaviour of semi-stable limit cycles, except 
the ground state which is stable. The model is applied to the spin-i and to the damped 
harmonic oscillator. For the latter it is shown that the coherent states remain coherent and 
evolve as in the corresponding classical problem. 

1. Introduction 

As is well known, quantum theory has been very successful in its predictions of the 
atomic energy levels. Transitions between corresponding states have, however, only 
been described by means of a perturbation approach. This situation cannot be 
considered as being entirely satisfactory, one would prefer to be able to describe 
quantum transitions by means of an evolution equation for the state vectors 4, elements 
of a Hilbert space X. It is, however, well known that such an equation must be 
nonlinear, (Davies 1976, Andrade e Silva et a1 1962). In this paper we consider a 
possible generalisation of the Schrodinger equation which, in addition to its simplicity, 
has several interesting properties. 

We would like to emphasise that, regarding quantum mechanics from a fundamental 
point of view (Piron 1976), there are no a priori problems of compatibility between a 
nonlinear evolution equation and the basic principles of the usual Hilbert space 
formulation of quantum mechanics. 

This problem of dissipative quantum evolution has already received quite a lot of 
attention (see for example the review articles of Messer (1979) and Hasse (1975) and 
the references therein). One of the first approaches is the one by Caldirola (1941) who 
uses an explicit time dependent Hamiltonian corresponding to a Lagrangian from which 
the exact classical damped evolution equation can be derived. However this Hamil- 
tonian is, up to a particular time dependent canonical transformation, that of a 
conservative system (Lemos 1978 and Kernen 1958). A critical review of this approach 
has been made by Ray (1979). Albrecht (1975) proposed a class of simple friction 
potentials. Another approach based on the Hamilton-Jacobi equation is due to Stocker 
and Albrecht (1979). However, the best known approach to our problem is probably 
the one of Kostin (1975). Yasue (1976) has shown that Kostin's term arises naturally 
from the so-called stochastic quantisation procedure as applied to the classical'friction 
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term proportional to minus the velocity. However Kostin’s term is quite complicated 
and it does not take into account the Hilbert space structure of quantum mechanics. 
Furthermore if one indeed has to expect that a quantum dissipative evolution exhibits 
some classical features in certain cases or limits, there may exist specific quantal aspects, 
without any classical counterparts. Remaud and Hernandez (1980) and Hasse (1978) 
have studied the motion of a wave packet with and without friction. 

In the following we shall look at the problem from a new point of view. Most 
approaches to nonlinear dissipative Schrodinger like equations deal with nonlinear real 
potentials which are required to ‘quantise’ in some way the classical friction term. We 
shall not look at the problem in this way, and in fact our proposal does not even involve 
using a potential. Furthermore we shall not restrict ourselves to wave mechanics, i.e. to 
the special case %= 2”(R3), but work in the general realm of quantum mechanics, with 
an arbitrary Hilbert space. 

In the next section we present our model, give some properties of the corresponding 
evolution equation and discuss its solution. In 8 3 we examine the cases of two- and 
three-level systems. In 0 4 we shall use the Weyl transformation and discuss the formal 
limit h -+ 0, in order to exhibit the classical counterpart of our evolution equation and to 
compare it with usual classical dissipative equations. Section 5 is devoted to the 
standard example, namely the damped harmonic oscillator. 

2. The model, properties and solution 

In this section we study the following simple nonlinear dissipative quantum evolution 
equation: 

where H is the Hamiltonian of the system, and k is a positive real number. 
The physical justification for the interest in this equation lies in its simplicity and in 

the properties mentioned below. Equation (1) also admits the possiblity of describing 
quantum phenomena which are not described by the Schrodinger equation. Indeed it 
may be that some phenomena are not described by the Schrodinger equation, especially 
when energy is exchanged in an irreversible way between two systems. For some 
applications of equation (1) to such cases see Gisin (1980) and Gisin and Piron (1981). 

(a) Equation (1) conserves the norm of 4. From now on we shall assume that 1 1 )  = 1. 
(b) If CC, is an eigenvector of H then equation (1) reduces to the usual Schrodinger 
equation. 
(c) The evolution of the mean values of the (time independent) Hamiltonian reads: 
(d/dt)(H), = -2k(AH)’S 0 and (d/dt)(H), = 0 iff I) is an eigenvector of H. 

Let us list some important properties of equation (1): 

Proof. From ( lb )  one gets: 
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and 

(d/dt)(H)+ = 0 e A H  = 0 

e H +  = A4 for some A. 

Notice that up to this point k could also have been a real positive valued function 
on X, klL. 
(d) Equation (1) is invariant under a shift of the zero of energy. 
(e) Equation (1) is covariant under time independent gauge transformations. More 
generally, it is covariant under any unitary transformation and invariant under the 
symmetry group of H. 
(f) 4 is linear in H. Thus if H is larger, the system will follow the same evolution but 
correspondingly faster. 
(8) If H is bounded, then the following function f 

f : X + X  

Ijl--iHt,b+ k((H)-H)J/ 

satisfies the Lifschitz condition and equation (1) has then a unique solution (see Berger 
1977). The proof is immediate. 
(h) The formal solution of equation (1) is: 

exp[-(i+ k)Ht]+, 
” = ($01 exp( -2 kHt) I I j / o )  ”’ 

where we have chosen t = 0 as the initial time. 
In the case when the Hamiltonian H has a discrete spectrum this solution is given by: 

& ( t )  = Ci,a(0) exp[-(i+ k)A,t]N(t)-’” 

N ( t )  = lCi,a(0)/2 exp[-2kAit] 
i,a 

where 

4t = 1 Ci,a (t)pi,a 
1,a 

Hpi,a = Aipi,a ; (q i ,a lq j ,@)  = Si] 

In words equations (3) say: In the case of a measurement of the energy of the system, 
the probability that the result is larger than the mean value of the Hamiltonian 
decreases as a function of time, whereas the probability that this result is less than this 
mean value increases. 

A short analysis of equations (3) shows that almost all ICi,,(t)l’ tend to zero when 
t + 00, except the ones that correspond to the lowest energy level for which the initial 
state has a non-vanishing coefficient. That is 

r-rm 
 CL^ - (pKt,bo/IpK+o/) exp(-iAKt) 

where PK is the orthogonal projector onto the eigensubspace of H corresponding to A K ,  

AK = min {AilPi$o # 0). 
I 
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We thus see that the usual stationary states, i.e. the eigenvectors of the Hamiltonian 
H, appear as asymptotic solutions of the evolution equation (1). Furthermore, these 
states are ‘unstable below’ in the following sense: if the initial state is an almost 
stationary state, namely an eigenvector of H to which we add an even small non- 
vanishing component on a lower level, then it will evolve to this lower energy 
asymptotic state. On the contrary these states are ‘stable above’. Obviously the ground 
state is stable. 

It may seem paradoxical to call an equation dissipative when it admits all eigenstates 
of H as stationary solutions. But it is no more paradoxical that a pyramid standing on its 
peak which, according to classical mechanics, is in an (unstable) equilibrium state. 

(i) If H is bounded below, then +t is the normalised projection of a unitary 
evolution which takes place on a larger Hilbert space YC: 

P exp(-iKtcp) 
*t = IIP exp(-iKt)qII 

where P is a projector defined on YC, PYC= X, and K is a self-adjoint operator on YC 
whose spectrum equals the whole real line. 

Proof. If m is the lower bound of H, then H’ = H + m 1 is a positive operator and H and 
H’ generate via equation (1) the same evolution. Now exp{-(i + k)H’t }  is a contraction 
semigroup which, according to Sz-Nagy’s theorem (Sz-Nagy and Foias 1970), can be 
dilated. 

The problem of deducing the reduced deterministic dynamic of a subsystem will be 
studied in a forthcoming paper (Gisin 1981). 

3. Example: systems with two or three levels 

In the case where we have only two non-dengerate levels, as in a single spin-; system, or 
if only two components of the initial state are non-zero, then, using equations (3), we 
obtain, 

where A I  < A z  denote the values of the energy of the two levels. The graph of ( H ) ,  is 
shown in figure 1. 

A2 

( H ) ,  

A, 

Figure 1. Decreasing of the energy as a function of time for a two-level system. 
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If exactly three components of the initial state are non-vanishing then the graph of 
( H ) ,  depends strongly on the exact initial conditions. For example if IC3(0)l >> ICz(0)l >> 
lCl(0)l, then it has the form shown in figure 2. Whereas for /C3(0)) >> lCl(0)l >> lCz(0)l, it 
is that of figure 3. 

t 

Figure 2. Decreasing of the enery as a function of time for a three-level system with initial 
condition lC31 >> lC21 >> IC1(. 

Figure 3. Decreasing of the energy as a function of time for a three-level system with initial 
condition IC3( >> IC1l >> lC21. 

4. Weyl transformation and classical limit 

In this section we apply a Weyl transformation to equation (1). Then we take the formal 
limit h + 0. 

First we have to rewrite our equation (1) as an evolution equation for the projector 
p = ($)(I$ and introduce the Planck constant divided by 2 ~ ,  h:  

(4) 
k 

b = - ( i /NH,  P l - - p x  PI, PI. 

Using standard results (de Groot 1975) we obtain the classical analogue of equation 
(4), (in one space dimension): 

atp(p, 4,  t )  = {h, PI + k { { h  PI, PI ( 5 )  

where p ( p ,  q, t )  now denotes the distribution function over the classical phase space, 
h ( p ,  q, t )  is the Weyl transformation of the Hamiltonian H, and { , } denotes the 
Poisson bracket. 

If ( p m ,  qm) is a local maxima of p ( p ,  q, to), and if h ( p ,  q )  = p 2 / 2 m  + V ( q ) ,  then 
equation (5) implies: 

4 ( P m ,  q m ,  t o ) = a p h ( P m ,  q m ) - k ~ p q a q V ( q m )  (6a) 



2264 N Gisin 

2 where pi = -ai P ( P m ,  qm, to) ,  i = P ,  4. 
Because of the limit h + 0 equation ( 5 )  cannot of course exhibit all the features of 

our quantum evolution. Equation ( 6 a )  however, implies that q ( p m ,  qm, to) tends to a 
local minimum of the potential V ( q ) ,  and equation ( 6 b )  contains the well known 
friction term proportional to -pa  Notice that the second term on the right-hand side of 
equation ( 6 a )  can be removed by an appropriate gauge transformation. 

5. Damped harmonic oscillator 

The damped harmonic oscillator is the standard example of a dissipative system. Many 
authors have tried to quantise it, Dekker (1979), Huguenin (1978) amongothers. From 
the preceding sections we already know that our model will exhibit different behaviour 
from that of the classical damped oscillator: the system will evolve to the lowest energy 
eigenstate of the usual quantum oscillator for which the initial state has a non-vanishing 
coefficient. An interesting question is to ask what happens to the coherent states, also 
called quasi-classical states. As any coherent state has a non-vanishing component in 
the ground state we know that the system will tend asymptotically to this state. But the 
surprising fact is that coherent states remain coherent during their evolution under 
equation ( l ) ,  and follow the path of a classical damped oscillator. The quasi-classical 
states of the damped quantum oscillator thus exhibit classical features, although we 
have introduced a priori no classical friction term. 

H = p 2 / 2 m  + mw2q2/2  

6 = p / J Z ,  
a = (4 +io)/  J2 
H = hwH, 

With obvious notation we have: 

4 = (mw/ti)'"q 

A = ( p ^ *  + d 2 ) / 2  = a+a + ;. 
Let us denote by / a )  the coherent states, i.e. the eigenstates of the 'annihilation' 

operator a : 

ala) = a /a> with a E C. 

Then the solution of equation (1) with the initial condition Go = lao) is: 

4% = I4 
where a,  is a complex-valued function of time satisfying the following equation: 

c i z  = -iwat - kwat.  

From this last equation one deduces that: 
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and 

where 

w z  = w2(1 + k2) 
A = kw. (96) 

Equation (8) is the usual evolution equation of the classical damped oscillator. 
Equations (9) imply that w o  > A, i.e. the damping is below critical. In this case an 
appropriate gauge transformation can be used to absorb the second term on the 
right-hand side of equation ( 7 b ) ,  so that equations (7) are equivalent to the usual 
classical equations. 

6. Conclusions 

We would like to emphasise that we did not start with a classical friction term, and then 
try to quantise it, as has often been done. On the contrary we started within a quantum 
theoretical context, describing the states of the physical system by normed vectors in a 
Hilbert space. Thus the quite simple nonlinear equation (1) is a fully quantal evolution 
law, compatible with any Hilbert space. For example compare figures 4 and 5 which 
show two solutions of our model, one for a damped spin-i, the other for the coherent 
state of the damped harmonic oscillator. In 0 2 we gave its complete solution, and the 
qualitative analysis we made in §§ 2 and 3 shows some nice properties of this model. 
Namely the fact that the eigenvectors of the Hamiltonian H appear as a kind of limit 
cycle, and that only the ground state is stable. Sections 4 and 5 show that the 
quasi-classical states of the harmonic oscillator, and any state in the limit h + 0, exhibit 
classical features. 

T' 

Figure 4. Solution of equation (1) for the damped spin-: system. 
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Figure 5. Solution of equation (1) for the coherent state of the damped harmonic oscillator. 
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